Stable On - Line Evolutionary Learning of NN - MLPQiangfu

نویسنده

  • Qiangfu Zhao
چکیده

1371 Stable On-Line Evolutionary Learning of NN-MLP Qiangfu Zhao Abstract| To design the nearest neighbor based multilayer perceptron (NN-MLP) e ciently, the author has proposed a non-genetic based evolutionary algorithm called the R4|rule. For o -line learning, the R4|rule can produce the smallest or nearly smallest networks with high generalization ability by iteratively performing four basic operations: recognition, remembrance, reduction and review. This algorithm, however, cannot be applied directly to on-line learning because its inherent instability, which is caused by over-reduction and over-review. To stabilize the R4|rule, this paper proposes some improvements for reduction and review. The improved reduction is more robust for on-line learning because the tness of each hidden neuron is de ned by its overall behavior in many learning cycles. The new review is more e cient because hidden neurons are adjusted in a more careful way. The performance of the improved R4| rule for on-line learning is shown by experimental results. Keywords| Non-genetic evolutionary learning, on-line learning, the R4|rule, supervised competitive learning, the nearest neighbor based multilayer perceptron

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government’s role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their pro...

متن کامل

Evolutionary ensembles with negative correlation learning

Based on negative correlation learning and evolutionary learning, this paper presents evolutionary ensembles with negative correlation learning (EENCL) to address the issues of automatic determination of the number of individual neural networks (NNs) in an ensemble and the exploitation of the interaction between individual NN design and combination. The idea of EENCL is to encourage di erent in...

متن کامل

Evolutionary learning of nearest-neighbor MLP

The nearest-neighbor multilayer perceptron (NN-MLP) is a single-hidden-layer network suitable for pattern recognition. To design an NN-MLP efficiently, this paper proposes a new evolutionary algorithm consisting of four basic operations: recognition, remembrance, reduction, and review. Experimental results show that this algorithm can produce the smallest or nearly smallest networks from random...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997